69 Maik Porrmann and Axel Voigt, Shape evolution of fluid deformable surfaces under active geometric forces, In Physics of Fluids, Vol. 36 (10), 2024. [doi] [bibtex]
68 Stefan Neukamm and Kai Richter, Dimension reduction for elastoplastic rods in the bending regime, arXiv e-prints, 2409.08646 [math.AP], 2024. [arXiv] [bibtex]
67 Sabine Haberland, Patrick Jaap, Stefan Neukamm, Oliver Sander, and Mario Varga, Representative Volume Element Approximations in Elastoplastic Spring Networks, In Multiscale Modeling & Simulation, Vol. 22, pp. 588–638, 2024. [arXiv] [doi] [bibtex]
66 Lucas Benoit--Maréchal, Ingo Nitschke, Axel Voigt, and Marco Salvalaglio, Mesoscale modeling of deformations and defects in thin crystalline sheets, In Mechanics of Materials, Vol. 198, pp. 105114, 2024. [arXiv] [doi] [bibtex]
65 Veit Krause and Axel Voigt, Wrinkling of fluid deformable surfaces, In Journal of the Royal Society Interface, Vol. 21 (216), 2024. [doi] [bibtex]
64 Rainer Backofen, Abdelrahman Y. A. Altawil, Marco Salvalaglio, and Axel Voigt, Nonequilibrium hyperuniform states in active turbulence, In PNAS, Vol. 121 (24), pp. e2320719121, 2024. [arXiv] [doi] [bibtex]
63 Stefan Neukamm and Kai Richter, Linearization and Homogenization of nonlinear elasticity close to stress-free joints, arXiv e-prints, 2406.04831 [math.AP], 2024. [arXiv] [bibtex]
62 Ingo Nitschke and Axel Voigt, Active nematodynamics on deformable surfaces, arXiv e-prints, 2405.13683 [cond-mat.soft], 2024. [arXiv] [bibtex]
61 Sören Bartels, Balázs Kovács, and Zhangxian Wang, Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints, In IMA Journal of Numerical Analysis, Vol. 44, pp. 633–653, 2024. [arXiv] [doi] [bibtex]
60 Michael Nestler, Simon Praetorius, Zhi-Feng Huang, Hartmut Löwen, and Axel Voigt, Active smectics on a sphere, In Journal of Physics: Condensed Matter, Vol. 36 (18), pp. 185001, 2024. [arXiv] [doi] [bibtex]
59 Lea Happel and Axel Voigt, Coordinated Motion of Epithelial Layers on Curved Surfaces, In Physical Review Letters, Vol. 132, pp. 078401, 2024. [doi] [bibtex]
58 Maxim A. Olshanskii, Arnold Reusken, and Paul Schwering, An Eulerian finite element method for tangential Navier-Stokes equations on evolving surfaces, In Mathematics of Computation, Vol. 93, pp. 2031–2065, 2024. [arXiv] [doi] [bibtex]
57 Guy Foghem and Moritz Kassmann, A general framework for nonlocal Neumann problems, In Communications in Mathematical Sciences, Vol. 22 (1), pp. 15–66, 2024. [arXiv] [bibtex]
56 Hanne Hardering and Simon Praetorius, Parametric Finite-Element Discretization of the Surface Stokes Equations, In IMA Journal Of Numerical Analysis, 2024, (accepted for publication). [arXiv] [doi] [bibtex]
55 Arnold Reusken, Analysis of the Taylor-Hood surface finite element method for the surface Stokes equation, In Mathematics of Computation, 2024. [arXiv] [doi] [bibtex]
54 Klaus Böhnlein, Stefan Neukamm, Markus Rüggeberg, and Oliver Sander, Dimension-reduced mathematical modeling of self-shaping wooden composite bilayers, In Wood Material Science & Engineering, pp. 1–11, 2024. [doi] [bibtex]
53 Elena Bachini, Veit Krause, Ingo Nitschke, and Axel Voigt, Derivation and simulation of a two-phase fluid deformable surface model, In Journal of Fluid Mechanics, Vol. 977, pp. A41, 2023. [doi] [bibtex]
52 Archit Bhatnagar, Michael Nestler, Peter Groß, Mirna Kramar, Mark Leaver, Axel Voigt, and Stephan W. Grill, Axis convergence in C. elegans embryos, In Current Biology, Vol. 33, pp. P5096-5108.E15, 2023. [doi] [bibtex]
51 Ingo Nitschke and Axel Voigt, Tensorial time derivatives on moving surfaces: General concepts and a specific application for surface Landau-de Gennes models, In Journal of Geometry and Physics, Vol. 194, pp. 105002, 2023. [arXiv] [doi] [bibtex]
50 Lucas Benoit--Maréchal and Marco Salvalaglio, Gradient elasticity in Swift-Hohenberg and phase-field crystal models, In Modelling and Simulation in Materials Science and Engineering, Vol. 32 (5), pp. 055005, 2023. [arXiv] [doi] [bibtex]
49 Ingo Nitschke, Souhayl Sadik, and Axel Voigt, Tangential tensor fields on deformable surfaces — how to derive consistent L2-gradient flows, In IMA Journal of Applied Mathematics, Vol. 88 (6), pp. 917–958, 2023. [doi] [bibtex]
48 Guy Foghem, David Padilla-Garza, and Markus Schmidtchen, Gradient Flow Solutions For Porous Medium Equations with Nonlocal Lévy-type Pressure, arXiv e-prints, 2311.15340 [math.AP], 2023. [arXiv] [bibtex]
47 Ingo Nitschke and Axel Voigt, Beris-Edwards Models on Evolving Surfaces: A Lagrange-D'Alembert Approach, arXiv e-prints, 2311.06240 [math-ph], 2023. [arXiv] [bibtex]
46 Lucas D. Wittwer and Sebastian Aland, A computational model of self-organized shape dynamics of active surfaces in fluids, In Journal of Computational Physics: X, Vol. 17, pp. 100126, 2023. [arXiv] [doi] [bibtex]
45 Guy Foghem, Banach–Saks Theorem for $L^1$ revisited, arXiv e-prints, 2311.07319 [math.FA], 2023. [arXiv] [bibtex]
44 Georgios Akrivis, Sören Bartels, and Christian Palus, Quadratic constraint consistency in the projection-free approximation of harmonic maps and bending isometries, arXiv e-prints, 2310.00381 [math.NA], 2023. [arXiv] [bibtex]
43 Hauke Sass and Arnold Reusken, An accurate and robust Eulerian finite element method for partial differential equations on evolving surfaces, In Computers & Mathematics with Applications, Vol. 146, pp. 253–270, 2023. [arXiv] [doi] [bibtex]
42 Veit Krause and Axel Voigt, A numerical approach for fluid deformable surfaces with conserved enclosed volume, In Journal of Computational Physics, Vol. 486, pp. 112097, 2023. [doi] [bibtex]
41 Abhinav Singh, Alejandra Foggia, Pietro Incardona, and Ivo F. Sbalzarini, A Meshfree Collocation Scheme for Surface Differential Operators on Point Clouds, In Journal of Scientific Computing, Vol. 96 (89), 2023. [arXiv] [doi] [bibtex]
40 Sören Bartels, Christian Palus, and Zhangxian Wang, Quasi-Optimal Error Estimates for the Finite Element Approximation of Stable Harmonic Maps with Nodal Constraints, In SIAM Journal on Numerical Analysis, Vol. 61, pp. 1819–1834, 2023. [arXiv] [doi] [bibtex]
39 Elena Bachini, Philip Brandner, Thomas Jankuhn, Michael Nestler, Simon Praetorius, Arnold Reusken, and Axel Voigt, Diffusion of tangential tensor fields: numerical issues and influence of geometric properties, In Journal of Numerical Mathematics, Vol. 32 (1), 2023. [arXiv] [doi] [bibtex]
38 Hanne Hardering and Simon Praetorius, Tangential Errors of Tensor Surface Finite Elements, In IMA Journal of Numerical Analysis, Vol. 43, pp. 1543-–1585, 2023, drac015. [arXiv] [doi] [bibtex]
37 Sören Bartels, Max Griehl, Stefan Neukamm, David Padilla-Garza, and Christian Palus, A nonlinear bending theory for nematic LCE plates, In Mathematical Models and Methods in Applied Sciences, pp. 1–80, 2023. [arXiv] [doi] [bibtex]
36 Eloy M. de Kinkelder, Elisabeth Fischer-Friedrich, and Sebastian Aland, Chiral flows can induce neck formation in viscoelastic surfaces, In New Journal of Physics, 2023. [arXiv] [doi] [bibtex]
35 Elena Bachini, Veit Krause, and Axel Voigt, The interplay of geometry and coarsening in multicomponent lipid vesicles under the influence of hydrodynamics, In Physics of Fluids, Vol. 35 (4), pp. 042102, 2023. [doi] [bibtex]
34 Guy Foghem, Stability of complement value problems for $p$-Lévy operators, arXiv e-prints, 2303.03776 [math.AP], 2023. [arXiv] [bibtex]
33 Michael Nestler and Axel Voigt, A diffuse interface approach for vector-valued PDEs on surfaces, arXiv e-prints, 2303.07135 [math.NA], 2023. [arXiv] [bibtex]
32 Guy Fabrice Foghem Gounoue, A remake of Bourgain–Brezis–Mironescu characterization of Sobolev spaces, In Partial Differential Equations and Applications, Vol. 4 (16), 2023. [arXiv] [doi] [bibtex]
31 Eloy M. de Kinkelder, Elisabeth Fischer-Friedrich, and Sebastian Aland, Pulsatory patterns in active viscoelastic fluids with distinct relaxation time scales, In New Journal of Physics, 2023. [arXiv] [bibtex]
30 Klaus Böhnlein, Stefan Neukamm, David Padilla-Garza, and Oliver Sander, A homogenized bending theory for prestrained plates, In J. Nonlinear Sci., Vol. 33, pp. 22, 2023. [arXiv] [doi] [bibtex]
29 Maxim A. Olshanskii, Arnold Reusken, and Alexander Zhiliakov, Tangential Navier-Stokes equations on evolving surfaces: Analysis and simulations, In Mathematical Models and Methods in Applied Sciences, Vol. 32 (14), pp. 2817–2852, 2022. [arXiv] [doi] [bibtex]
28 Philip Brandner, Arnold Reusken, and Paul Schwering, On derivations of evolving surface Navier–Stokes equations, In Interfaces Free Bound., Vol. 24 (4), pp. 533–563, 2022. [arXiv] [doi] [bibtex]
27 Sören Bartels, Klaus Böhnlein, Christian Palus, and Oliver Sander, Benchmarking Numerical Algorithms for Harmonic Maps into the Sphere, arXiv e-prints, 2209.13665 [math.NA], 2022. [arXiv] [bibtex]
26 Jean-Daniel Djida, Guy Fabrice Foghem Gounoue, and Yannick Kouakep Tchaptchié, Nonlocal complement value problem for a global in time parabolic equation, In Journal of Elliptic and Parabolic Equations, Vol. 8, pp. 767–789, 2022. [arXiv] [doi] [bibtex]
25 Mirco Bonati, Lucas D. Wittwer, Sebastian Aland, and Elisabeth Fischer-Friedrich, On the role of mechanosensitive binding dynamics in the pattern formation of active surfaces, In New Journal of Physics, Vol. 24 (7), pp. 073044, 2022. [arXiv] [doi] [bibtex]
24 Philip Brandner, Thomas Jankuhn, Simon Praetorius, Arnold Reusken, and Axel Voigt, Finite element discretization methods for velocity-pressure and stream function formulations of surface Stokes equations, In SIAM Journal on Scientific Computing, Vol. 44 (4), 2022. [arXiv] [doi] [bibtex]
23 Harbir Antil, Sören Bartels, and Armin Schikorra, Approximation of fractional harmonic maps, In IMA Journal of Numerical Analysis, 2022, drac029. [arXiv] [doi] [bibtex]
22 Arnold Reusken, Analysis of finite element methods for surface vector-Laplace eigenproblems, In Mathematics of Computation, Vol. 91, pp. 1587–1623, 2022. [arXiv] [doi] [bibtex]
21 Sören Bartels, Max Griehl, Jakob Keck, and Stefan Neukamm, Modeling and simulation of nematic LCE rods, arXiv e-prints, 2205.15174 [math.AP], 2022. [arXiv] [bibtex]
20 Ingo Nitschke and Axel Voigt, Observer-invariant time derivatives on moving surfaces, In Journal of Geometry and Physics, Vol. 173, pp. 104428, 2022. [doi] [bibtex]
19 Simon Praetorius and Florian Stenger, Dune-CurvedGrid – A Dune module for surface parametrization, In Archive of Numerical Software, Vol. 6 (1), pp. 1–27, 2022. [doi] [bibtex]
18 Sören Bartels, Frank Meyer, and Christian Palus, Simulating Self-Avoiding Isometric Plate Bending, In SIAM Journal on Scientific Computing, Vol. 44 (3), pp. A1475–A1496, 2022. [arXiv] [doi] [bibtex]
17 Thomas Jankuhn, Maxim A. Olshanskii, and Arnold Reusken und Alexander Zhiliakov, Error analysis of higher order Trace Finite Element Methods for the surface Stokes equation, In Journal of Numerical Mathematics, Vol. 29 (3), pp. 245–267, 2021. [doi] [bibtex]
16 Eloy de Kinkelder, Leonard Sagis, and Sebastian Aland, A numerical method for the simulation of viscoelastic fluid surfaces, In Journal of Computational Physics, Vol. 440, pp. 110413, 2021. [doi] [bibtex]
15 Kamran Hosseini, Annika Frenzel, and Elisabeth Fischer-Friedrich, EMT changes actin cortex rheology in a cell-cycle-dependent manner, In Biophysical Journal, Vol. 120 (16), pp. 3516–3526, 2021. [doi] [bibtex]
14 Michael Rank and Axel Voigt, Active flows on curved surfaces, In Physics of Fluids, Vol. 33, pp. 072110, 2021. [doi] [bibtex]
13 Sören Bartels and Christian Palus, Stable gradient flow discretizations for simulating bilayer plate bending with isometry and obstacle constraints, In IMA Journal of Numerical Analysis, 2021, drab050. [doi] [bibtex]
12 Guy Foghem, Nonlocal Gagliardo–Nirenberg–Sobolev type inequality, arXiv e-prints, 2105.07989 [math.AP], 2021. [arXiv] [bibtex]
11 Sören Bartels and Philipp Reiter, Stability of a simple scheme for the approximation of elastic knots and self-avoiding inextensible curves, In Mathematics of Computation, Vol. 90, pp. 1499–1526, 2021. [doi] [bibtex]
10 Maxim A. Olshanskii, Arnold Reusken, and Alexander Zhiliakov, Inf-sup stability of the trace P2-P1 Taylor-Hood elements for surface PDEs, In Mathematics of Computation, Vol. 90, pp. 1527–1555, 2021. [doi] [bibtex]
9 Sebastian Reuther, Ingo Nitschke, and Axel Voigt, A numerical approach for fluid deformable surfaces, In Journal of Fluid Mechanics, Vol. 900, pp. R8, 2020. [doi] [bibtex]
8 Philip Brandner and Arnold Reusken, Finite Element Error Analysis of Surface Stokes Equations in Stream Function Formulation, In ESAIM: M2AN, Vol. 54 (6), pp. 2069–2097, 2020. [doi] [bibtex]
7 Sören Bartels and Philipp Reiter, Numerical solution of a bending-torsion model for elastic rods, In Numerische Mathematik, Vol. 146 (4), pp. 661–697, 2020. [doi] [bibtex]
6 Ingo Nitschke, Sebastian Reuther, and Axel Voigt, Liquid crystals on deformable surfaces, In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 476 (2241), pp. 20200313, 2020. [doi] [bibtex]
5 Marcel Mokbel and Sebastian Aland, An ALE method for simulations of axisymmetric elastic surfaces in flow, In Numerical Methods in Fluids, Vol. 92 (11), pp. 1604–1625, 2020. [doi] [bibtex]
4 Sören Bartels, Chapter 3 - Finite element simulation of nonlinear bending models for thin elastic rods and plates, In Geometric partial differential equations. Part I (Elsevier/North-Holland, Amsterdam), 2020. [doi] [bibtex]
3 Sören Bartels, Numerical simulation of inextensible elastic ribbons, In SIAM Journal on Numerical Analysis, Vol. 58 (6), pp. 3332–3354, 2020. [doi] [bibtex]
2 Marcel Mokbel, Kamran Hosseini, Sebastian Aland, and Elisabeth Fischer-Friedrich, The Poisson Ratio of the Cellular Actin Cortex is Frequency Dependent, In Biophysical Journal, Vol. 118 (8), pp. 1968–1976, 2020. [doi] [bibtex]
1 Thomas Jankuhn and Arnold Reusken, Higher order Trace Finite Element Methods for the Surface Stokes Equation, arXiv e-prints, 1909.08327 [math.NA], 2019. [arXiv] [bibtex]