45 
Maxim A. Olshanskii, Arnold Reusken, and Paul Schwering, An Eulerian finite element method for tangential NavierStokes equations on evolving surfaces, arXiv eprints, 2302.00779 [math.NA], 2023.
[arXiv]
[bibtex]

44 
Eloy M. de Kinkelder, Elisabeth FischerFriedrich, and Sebastian Aland, Pulsatory patterns in active viscoelastic fluids with distinct relaxation time scales, In New Journal of Physics, 2023.
[arXiv]
[bibtex]

43 
Eloy M. de Kinkelder, Elisabeth FischerFriedrich, and Sebastian Aland, Chiral flows can induce neck formation in viscoelastic surfaces, In New Journal of Physics, 2023.
[arXiv]
[doi]
[bibtex]

42 
Archit Bhatnagar, Michael Nestler, Peter Groß, Mirna Kramar, Mark Leaver, Axel Voigt, and Stephan W. Grill, Axis convergence in C. elegans embryos, bioRxiv eprints, 2023.03.27.534329, 2023.
[doi]
[bibtex]

41 
Michael Nestler and Axel Voigt, A diffuse interface approach for vectorvalued PDEs on surfaces, arXiv eprints, 2303.07135 [math.NA], 2023.
[arXiv]
[bibtex]

40 
Ingo Nitschke and Axel Voigt, Tensorial time derivatives on moving surfaces: General concepts and a specific application for surface Landaude Gennes models, arXiv eprints, 2304.07220 [mathph], 2023.
[arXiv]
[bibtex]

39 
Elena Bachini, Veit Krause, and Axel Voigt, The interplay of geometry and coarsening in multicomponent lipid vesicles under the influence of hydrodynamics, In Physics of Fluids, Vol. 35 (4), pp. 042102, 2023.
[doi]
[bibtex]

38 
Veit Krause and Axel Voigt, A numerical approach for fluid deformable surfaces with conserved enclosed volume, In Journal of Computational Physics, Vol. 486, pp. 112097, 2023.
[doi]
[bibtex]

37 
Hauke Sass and Arnold Reusken, An Accurate and Robust Eulerian Finite Element Method for Partial Differential Equations on Evolving Surfaces, arXiv eprints, 2212.12030 [math.NA], 2022.
[arXiv]
[bibtex]

36 
Sören Bartels, Christian Palus, and Zhangxian Wang, Quasioptimal error estimates for the approximation of stable harmonic maps, arXiv eprints, 2209.11985 [math.NA], 2022.
[arXiv]
[bibtex]

35 
Sören Bartels, Klaus Böhnlein, Christian Palus, and Oliver Sander, Benchmarking Numerical Algorithms for Harmonic Maps into the Sphere, arXiv eprints, 2209.13665 [math.NA], 2022.
[arXiv]
[bibtex]

34 
Sabine Haberland, Patrick Jaap, Stefan Neukamm, Oliver Sander, and Mario Varga, Representative volume element approximations in elastoplastic spring networks, arXiv eprints, 2209.12509 [math.NA], 2022.
[arXiv]
[bibtex]

33 
Sören Bartels, Balázs Kovács, and Zhangxian Wang, Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints, arXiv eprints, 2208.08267 [math.NA], 2022.
[arXiv]
[bibtex]

32 
Sören Bartels, Max Griehl, Jakob Keck, and Stefan Neukamm, Modeling and simulation of nematic LCE rods, arXiv eprints, 2205.15174 [math.AP], 2022.
[arXiv]
[bibtex]

31 
Elena Bachini, Philip Brandner, Thomas Jankuhn, Michael Nestler, Simon Praetorius, Arnold Reusken, and Axel Voigt, Diffusion of tangential tensor fields: numerical issues and influence of geometric properties, arXiv eprints, 2205.12581 [math.NA], 2022.
[arXiv]
[bibtex]

30 
Abhinav Singh, Alejandra Foggia, Pietro Incardona, and Ivo F. Sbalzarini, Meshfree collocation for surface differential operators, arXiv eprints, 2205.10898 [math.NA], 2022.
[arXiv]
[bibtex]

29 
Mirco Bonati, Lucas D. Wittwer, Sebastian Aland, and Elisabeth FischerFriedrich, On the role of mechanosensitive binding dynamics in the pattern formation of active surfaces, In New Journal of Physics, Vol. 24 (7), pp. 073044, 2022.
[arXiv]
[doi]
[bibtex]

28 
Hanne Hardering and Simon Praetorius, Tangential Errors of Tensor Surface Finite Elements, In IMA Journal of Numerical Analysis, 2022, drac015.
[arXiv]
[doi]
[bibtex]

27 
Klaus Böhnlein, Stefan Neukamm, David PadillaGarza, and Oliver Sander, A homogenized bending theory for prestrained plates, In J. Nonlinear Sci., Vol. 33, pp. 22, 2023.
[arXiv]
[doi]
[bibtex]

26 
Sören Bartels, Max Griehl, Stefan Neukamm, David PadillaGarza, and Christian Palus, A nonlinear bending theory for nematic LCE plates, In Mathematical Models and Methods in Applied Sciences, pp. 1–80, 2023.
[arXiv]
[doi]
[bibtex]

25 
Ingo Nitschke and Axel Voigt, Observerinvariant time derivatives on moving surfaces, In Journal of Geometry and Physics, Vol. 173, pp. 104428, 2022.
[doi]
[bibtex]

24 
Maxim A. Olshanskii, Arnold Reusken, and Alexander Zhiliakov, Tangential NavierStokes equations on evolving surfaces: Analysis and simulations, In Mathematical Models and Methods in Applied Sciences, Vol. 32 (14), pp. 2817–2852, 2022.
[arXiv]
[doi]
[bibtex]

23 
Lucas D. Wittwer and Sebastian Aland, A computational model of selforganized shape dynamics of active surfaces in fluids, In Journal of Computational Physics: X, Vol. 17, pp. 100126, 2023.
[arXiv]
[doi]
[bibtex]

22 
Arnold Reusken, Analysis of finite element methods for surface vectorLaplace eigenproblems, In Mathematics of Computation, Vol. 91, pp. 1587–1623, 2022.
[arXiv]
[doi]
[bibtex]

21 
Simon Praetorius and Florian Stenger, DuneCurvedGrid – A Dune module for surface parametrization, In Archive of Numerical Software, Vol. 6 (1), pp. 1–27, 2022.
[doi]
[bibtex]

20 
Sören Bartels, Frank Meyer, and Christian Palus, Simulating SelfAvoiding Isometric Plate Bending, In SIAM Journal on Scientific Computing, Vol. 44 (3), pp. A1475–A1496, 2022.
[arXiv]
[doi]
[bibtex]

19 
Philip Brandner, Thomas Jankuhn, Simon Praetorius, Arnold Reusken, and Axel Voigt, Finite element discretization methods for velocitypressure and stream function formulations of surface Stokes equations, In SIAM Journal on Scientific Computing, Vol. 44 (4), 2022.
[arXiv]
[doi]
[bibtex]

18 
Philip Brandner, Arnold Reusken, and Paul Schwering, On derivations of evolving surface Navier–Stokes equations, In Interfaces Free Bound., Vol. 24 (4), pp. 533–563, 2022.
[arXiv]
[doi]
[bibtex]

17 
Eloy de Kinkelder, Leonard Sagis, and Sebastian Aland, A numerical method for the simulation of viscoelastic fluid surfaces, In Journal of Computational Physics, Vol. 440, pp. 110413, 2021.
[doi]
[bibtex]

16 
Thomas Jankuhn, Maxim A. Olshanskii, and Arnold Reusken und Alexander Zhiliakov, Error analysis of higher order Trace Finite Element Methods for the surface Stokes equation, In Journal of Numerical Mathematics, Vol. 29 (3), pp. 245–267, 2021.
[doi]
[bibtex]

15 
Kamran Hosseini, Annika Frenzel, and Elisabeth FischerFriedrich, EMT changes actin cortex rheology in a cellcycledependent manner, In Biophysical Journal, Vol. 120 (16), pp. 3516–3526, 2021.
[doi]
[bibtex]

14 
Sören Bartels and Christian Palus, Stable gradient flow discretizations for simulating bilayer plate bending with isometry and obstacle constraints, In IMA Journal of Numerical Analysis, 2021, drab050.
[doi]
[bibtex]

13 
Michael Rank and Axel Voigt, Active flows on curved surfaces, In Physics of Fluids, Vol. 33, pp. 072110, 2021.
[doi]
[bibtex]

12 
Sören Bartels and Philipp Reiter, Stability of a simple scheme for the approximation of elastic knots and selfavoiding inextensible curves, In Mathematics of Computation, Vol. 90, pp. 1499–1526, 2021.
[doi]
[bibtex]

11 
Harbir Antil, Sören Bartels, and Armin Schikorra, Approximation of fractional harmonic maps, In IMA Journal of Numerical Analysis, 2022, drac029.
[arXiv]
[doi]
[bibtex]

10 
Marcel Mokbel, Kamran Hosseini, Sebastian Aland, and Elisabeth FischerFriedrich, The Poisson Ratio of the Cellular Actin Cortex is Frequency Dependent, In Biophysical Journal, Vol. 118 (8), pp. 1968–1976, 2020.
[doi]
[bibtex]

9 
Sebastian Reuther, Ingo Nitschke, and Axel Voigt, A numerical approach for fluid deformable surfaces, In Journal of Fluid Mechanics, Vol. 900, pp. R8, 2020.
[doi]
[bibtex]

8 
Sören Bartels and Philipp Reiter, Numerical solution of a bendingtorsion model for elastic rods, In Numerische Mathematik, Vol. 146 (4), pp. 661–697, 2020.
[doi]
[bibtex]

7 
Ingo Nitschke, Sebastian Reuther, and Axel Voigt, Liquid crystals on deformable surfaces, In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 476 (2241), pp. 20200313, 2020.
[doi]
[bibtex]

6 
Marcel Mokbel and Sebastian Aland, An ALE method for simulations of axisymmetric elastic surfaces in flow, In Numerical Methods in Fluids, Vol. 92 (11), pp. 1604–1625, 2020.
[doi]
[bibtex]

5 
Sören Bartels, Numerical simulation of inextensible elastic ribbons, In SIAM Journal on Numerical Analysis, Vol. 58 (6), pp. 3332–3354, 2020.
[doi]
[bibtex]

4 
Sören Bartels, Chapter 3  Finite element simulation of nonlinear bending models for thin elastic rods and plates, In Geometric partial differential equations. Part I (Elsevier/NorthHolland, Amsterdam), 2020.
[doi]
[bibtex]

3 
Philip Brandner and Arnold Reusken, Finite Element Error Analysis of Surface Stokes Equations in Stream Function Formulation, In ESAIM: M2AN, Vol. 54 (6), pp. 2069–2097, 2020.
[doi]
[bibtex]

2 
Thomas Jankuhn and Arnold Reusken, Higher order Trace Finite Element Methods for the Surface Stokes Equation, arXiv eprints, 1909.08327 [math.NA], 2019.
[arXiv]
[bibtex]

1 
Maxim A. Olshanskii, Arnold Reusken, and Alexander Zhiliakov, Infsup stability of the trace P2P1 TaylorHood elements for surface PDEs, In Mathematics of Computation, Vol. 90, pp. 1527–1555, 2021.
[doi]
[bibtex]
