Hauke Sass and Arnold Reusken, An Accurate and Robust Eulerian Finite Element Method for Partial Differential Equations on Evolving Surfaces, arXiv e-prints, 2212.12030 [math.NA], 2022. [arXiv] [bibtex]
Sören Bartels, Christian Palus, and Zhangxian Wang, Quasi-optimal error estimates for the approximation of stable harmonic maps, arXiv e-prints, 2209.11985 [math.NA], 2022. [arXiv] [bibtex]
Sören Bartels, Klaus Böhnlein, Christian Palus, and Oliver Sander, Benchmarking Numerical Algorithms for Harmonic Maps into the Sphere, arXiv e-prints, 2209.13665 [math.NA], 2022. [arXiv] [bibtex]
Sabine Haberland, Patrick Jaap, Stefan Neukamm, Oliver Sander, and Mario Varga, Representative volume element approximations in elastoplastic spring networks, arXiv e-prints, 2209.12509 [math.NA], 2022. [arXiv] [bibtex]
Sören Bartels, Balázs Kovács, and Zhangxian Wang, Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints, arXiv e-prints, 2208.08267 [math.NA], 2022. [arXiv] [bibtex]
Sören Bartels, Max Griehl, Jakob Keck, and Stefan Neukamm, Modeling and simulation of nematic LCE rods, arXiv e-prints, 2205.15174 [math.AP], 2022. [arXiv] [bibtex]
Elena Bachini, Philip Brandner, Thomas Jankuhn, Michael Nestler, Simon Praetorius, Arnold Reusken, and Axel Voigt, Diffusion of tangential tensor fields: numerical issues and influence of geometric properties, arXiv e-prints, 2205.12581 [math.NA], 2022. [arXiv] [bibtex]
Abhinav Singh, Alejandra Foggia, Pietro Incardona, and Ivo F. Sbalzarini, Mesh-free collocation for surface differential operators, arXiv e-prints, 2205.10898 [math.NA], 2022. [arXiv] [bibtex]
Mirco Bonati, Lucas D. Wittwer, Sebastian Aland, and Elisabeth Fischer-Friedrich, On the role of mechanosensitive binding dynamics in the pattern formation of active surfaces, In New Journal of Physics, Vol. 24 (7), pp. 073044, 2022. [arXiv] [doi] [bibtex]
Hanne Hardering and Simon Praetorius, Tangential Errors of Tensor Surface Finite Elements, In IMA Journal of Numerical Analysis, 2022, drac015. [arXiv] [doi] [bibtex]
Klaus Böhnlein, Stefan Neukamm, David Padilla-Garza, and Oliver Sander, A homogenized bending theory for prestrained plates, arXiv e-prints, 2203.11098 [math.AP], 2023. [arXiv] [doi] [bibtex]
Sören Bartels, Max Griehl, Stefan Neukamm, David Padilla-Garza, and Christian Palus, A nonlinear bending theory for nematic LCE plates, arXiv e-prints, 2203.04010 [math.AP], 2022. [arXiv] [bibtex]
Ingo Nitschke and Axel Voigt, Observer-invariant time derivatives on moving surfaces, In Journal of Geometry and Physics, Vol. 173, pp. 104428, 2022. [doi] [bibtex]
Maxim A. Olshanskii, Arnold Reusken, and Alexander Zhiliakov, Tangential Navier-Stokes equations on evolving surfaces: Analysis and simulations, arXiv e-prints, 2203.01521 [math.AP], 2022. [arXiv] [bibtex]
Lucas D. Wittwer and Sebastian Aland, A computational model of self-organized shape dynamics of active surfaces in fluids, arXiv e-prints, 2203.00099 [cond-math.soft], 2022. [arXiv] [bibtex]
Arnold Reusken, Analysis of finite element methods for surface vector-Laplace eigenproblems, In Mathematics of Computation, Vol. 91, pp. 1587–1623, 2022. [arXiv] [doi] [bibtex]
Simon Praetorius and Florian Stenger, Dune-CurvedGrid – A Dune module for surface parametrization, In Archive of Numerical Software, Vol. 6 (1), pp. 1–27, 2022. [doi] [bibtex]
Sören Bartels, Frank Meyer, and Christian Palus, Simulating Self-Avoiding Isometric Plate Bending, In SIAM Journal on Scientific Computing, Vol. 44 (3), pp. A1475–A1496, 2022. [arXiv] [doi] [bibtex]
Philip Brandner, Thomas Jankuhn, Simon Praetorius, Arnold Reusken, and Axel Voigt, Finite element discretization methods for velocity-pressure and stream function formulations of surface Stokes equations, In SIAM Journal on Scientific Computing, Vol. 44 (4), 2022. [arXiv] [doi] [bibtex]
Philip Brandner, Arnold Reusken, and Paul Schwering, On derivations of evolving surface Navier-Stokes equations, arXiv e-prints, 2110.14262 [path-ph], 2021. [arXiv] [bibtex]
Eloy de Kinkelder, Leonard Sagis, and Sebastian Aland, A numerical method for the simulation of viscoelastic fluid surfaces, In Journal of Computational Physics, Vol. 440, pp. 110413, 2021. [doi] [bibtex]
Thomas Jankuhn, Maxim A. Olshanskii, and Arnold Reusken und Alexander Zhiliakov, Error analysis of higher order Trace Finite Element Methods for the surface Stokes equation, In Journal of Numerical Mathematics, Vol. 29 (3), pp. 245–267, 2021. [doi] [bibtex]
Kamran Hosseini, Annika Frenzel, and Elisabeth Fischer-Friedrich, EMT changes actin cortex rheology in a cell-cycle-dependent manner, In Biophysical Journal, Vol. 120 (16), pp. 3516–3526, 2021. [doi] [bibtex]
Sören Bartels and Christian Palus, Stable gradient flow discretizations for simulating bilayer plate bending with isometry and obstacle constraints, In IMA Journal of Numerical Analysis, 2021, drab050. [doi] [bibtex]
Michael Rank and Axel Voigt, Active flows on curved surfaces, In Physics of Fluids, Vol. 33, pp. 072110, 2021. [doi] [bibtex]
Sören Bartels and Philipp Reiter, Stability of a simple scheme for the approximation of elastic knots and self-avoiding inextensible curves, In Mathematics of Computation, Vol. 90, pp. 1499–1526, 2021. [doi] [bibtex]
Harbir Antil, Sören Bartels, and Armin Schikorra, Approximation of fractional harmonic maps, In IMA Journal of Numerical Analysis, 2022, drac029. [arXiv] [doi] [bibtex]
Marcel Mokbel, Kamran Hosseini, Sebastian Aland, and Elisabeth Fischer-Friedrich, The Poisson Ratio of the Cellular Actin Cortex is Frequency Dependent, In Biophysical Journal, Vol. 118 (8), pp. 1968–1976, 2020. [doi] [bibtex]
Sebastian Reuther, Ingo Nitschke, and Axel Voigt, A numerical approach for fluid deformable surfaces, In Journal of Fluid Mechanics, Vol. 900, pp. R8, 2020. [doi] [bibtex]
Sören Bartels and Philipp Reiter, Numerical solution of a bending-torsion model for elastic rods, In Numerische Mathematik, Vol. 146 (4), pp. 661–697, 2020. [doi] [bibtex]
Ingo Nitschke, Sebastian Reuther, and Axel Voigt, Liquid crystals on deformable surfaces, In Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 476 (2241), pp. 20200313, 2020. [doi] [bibtex]
Marcel Mokbel and Sebastian Aland, An ALE method for simulations of axisymmetric elastic surfaces in flow, In Numerical Methods in Fluids, Vol. 92 (11), pp. 1604–1625, 2020. [doi] [bibtex]
Sören Bartels, Numerical simulation of inextensible elastic ribbons, In SIAM Journal on Numerical Analysis, Vol. 58 (6), pp. 3332–3354, 2020. [doi] [bibtex]
Sören Bartels, Chapter 3 - Finite element simulation of nonlinear bending models for thin elastic rods and plates, In Geometric partial differential equations. Part I (Elsevier/North-Holland, Amsterdam), 2020. [doi] [bibtex]
Philip Brandner and Arnold Reusken, Finite Element Error Analysis of Surface Stokes Equations in Stream Function Formulation, In ESAIM: M2AN, Vol. 54 (6), pp. 2069–2097, 2020. [doi] [bibtex]
Thomas Jankuhn and Arnold Reusken, Higher order Trace Finite Element Methods for the Surface Stokes Equation, arXiv e-prints, 1909.08327 [math.NA], 2019. [arXiv] [bibtex]
Maxim A. Olshanskii, Arnold Reusken, and Alexander Zhiliakov, Inf-sup stability of the trace P2-P1 Taylor-Hood elements for surface PDEs, In Mathematics of Computation, Vol. 90, pp. 1527–1555, 2021. [doi] [bibtex]